Study of the Absorption of Myo-Inositol Hexakisphosphate (InsP₆) through the Skin

Felix Grases,* Joan Perelló, Bernat Isern, and Rafel M. Prieto

Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS), University of Balearic Islands; E-07122 Palma of Mallorca, Spain. Received November 19, 2004; accepted January 17, 2005

Recently, some properties of myo-inositol hexakisphosphate (InsP₆) are related to its dermatological use as a discolouring agent, on preventing calcinosis cutis or due to its important role on premature aging. Some studies also seem to demonstrate a capacity of InsP₆ to inhibit skin cancer. In this paper, a first study of the absorption of InsP₆ through the skin is developed. Due to the correlation between InsP₆ absorption and its urinary excretion, these last values were used to evaluate this process. It was found that using a moisturizing cream as vehicle, the InsP₆ sodium salt was absorbed at significantly higher amounts than the InsP₆ calcium–magnesium salt. Maximum InsP₆ urinary concentrations were observed approximately at 14 d of 2% InsP₆ topical cream application, and gave 66.35±5.49 mg/l urinary InsP₆ when the sodium salt was used and 16.02±2.61 mg/l urinary InsP₆ when the calcium–magnesium salt was applied. When the InsP₆ topical cream administration ceased, the InsP₆ urinary excretion fell dramatically approximately during a period of 10 d. From these results, it can be deduced that by topical administration InsP₆ can achieve important concentrations in tissues and biological fluids, this demonstrating that it is possible to propose the topic use as a new InsP₆ administration route.

Key words InsP₆ skin absorption; urinary excretion; cream application; dermatological use

Myo-inositol hexakisphosphate (InsP₆) is an abundant component of plant seeds. In whole grain cereals it ranges from 1.5 to 6.4% and it is mostly associated with calcium and magnesium ions, the so-called phytin.1—2) Recently it was found that InsP₆ is also present in all mammalian organs, tissues and fluids but at significantly low amounts. Moreover, it was demonstrated that the levels found in biological fluids (blood, urine, interstitial liquid) and mammalian tissues clearly depended on the dietary intake.3—5)

Diverse studies performed by Mellanby demonstrated that a high InsP₆ content in some diets, as sodium salt, reduced calcium absorption and induced rickets.6) Ever since up to now, several studies have attributed “anti-nutritional” properties to phytate.7—11) Nevertheless, other studies12—16) have shown that those findings are not quite so clear and simple as mentioned. Moreover, from the 1980s to the present, important physiological functions of InsP₆ have been suggested as its properties as an antioxidant17,18) and its role in colon cancer prevention.19,20) The InsP₆ present in urine and biological fluids also exhibited an important role in preventing pathological calcifications as renal calculi21—23) or calcinosis cutis,24) due to its powerful capacity to act as crystallization inhibitor of calcium salts.

Finally, the most recent observations about the properties of InsP₆ are related to its dermatological use. The majority of those applications are referred to their important action on premature aging or as discolouring agent of the skin.25) Also some studies seem to demonstrate a capacity of InsP₆ to inhibit skin cancer.26—27) In the present paper a first study of the absorption of InsP₆ through the skin is developed.

MATERIALS AND METHODS

Animals, Diets and Experimental Design Twenty-four female Wistar rats of approximately 225 g from Harlan Iberica s.l. (Barcelona, Spain) were acclimated in the course of 7 d to our animal house. Animals were kept in Plexiglas cages (two animals per cage) at a temperature of 21±1 °C and relative humidity of 60±5% with a 12-h on–off light cycle. After this period, animals were randomly assigned into four groups of six rats respectively. Rats were fed with 4068.02 Reference Diet (HopeFarms BV, Woerden, The Netherlands), a synthetic purified diet (Table 1) in which InsP₆ is undetectable.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>% in diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid casein</td>
<td>20</td>
</tr>
<tr>
<td>Corn starch</td>
<td>10</td>
</tr>
<tr>
<td>Cellulose</td>
<td>5</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>5</td>
</tr>
<tr>
<td>Glucose</td>
<td>52.8</td>
</tr>
<tr>
<td>Ca₃PO₄·2H₂O</td>
<td>1.3</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>1</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.40</td>
</tr>
<tr>
<td>KCl</td>
<td>0.70</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.30</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.40</td>
</tr>
<tr>
<td>MgO</td>
<td>0.20</td>
</tr>
<tr>
<td>dl-Methionine</td>
<td>0.20</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>0.40</td>
</tr>
<tr>
<td>Standard vitamin mix</td>
<td>1</td>
</tr>
<tr>
<td>Standard mineral mix</td>
<td>1</td>
</tr>
</tbody>
</table>

After a period of 16 d consuming such diet, during which the urinary InsP₆ became undetectable, rats were topically treated once a day with 4 g of a standard cream with a supplement of 0.4, 1.2 and 2.0% of InsP₆ as sodium salt or 2.0% of InsP₆ as calcium magnesium salt (phytin). The surface of treatment was about 50 cm². The application area was located on the back skin of the animal and was previously shaved using an electric shaver (each 4 d). During cream treatment animals were located individually to avoid licking cream. pH of all creams was adjusted to 4—4.5 (see Table 2). Samples of 24-h urine were collected at days 0, 7 and 14 to evaluate InsP₆ excretion. After 14 d of treatment, rats treated with the standard cream containing 0.4 and 1.2% of InsP₆ as sodium...
salt were sacrificed, whereas the treatment was maintained for rats treated with the standard cream containing 2.0% of InsP6 as sodium salt or calcium/magnesium salt, until InsP6 urinary excretions became constant (34 d). Then, the cream application ceased but collection of 24-h urine samples continued until InsP6 urinary levels decreased and became constant. When finishing the experiment, animals were sacrificed. The procedures used in this experiment were carried out according to the Directive 86/609/EEC regarding the protection of animals used for experimental and other scientific purposes and official permission to perform this animal experiment was obtained from the ethical committee of our University.

InsP6 Determination The determination of InsP6 levels in urine samples was performed using an analytical methodology based on the determination of total phosphorus by atomic emission spectrometry ICP.28) This methodology allows a measurement of total InsP6 with a detection limit of 60 \(\mu g/l \).

Procedure: 5 ml of urine (acidified with HCl 1:1 until pH=3—4) was transferred to a column containing 0.2 g of anion exchange resin (the inner diameter was 4 mm). The first eluate was discarded, then the column was washed with 50 ml of HCl 50 mM. The second eluate was discarded. Then, the column was washed with 3 ml of HNO3 2 M. The determination of InsP6 was carried out through direct phosphorus analysis of this last eluate by ICP-AES using the corresponding calibration curve.

The ICP-AES conditions used were the following: outer argon flow 15 l/min, auxiliar argon flow 1 l/min, inner argon flow 1 l/min, nebulizer uptake rate 1 ml/min and wavelenght 213.618 nm.

Statistics Values in the figures are expressed as mean (S.E.). The Student t-test was used to assess differences of means. Conventional Windows software was used for statistical computations. A value of \(p<0.05 \) was considered to assess statistical significance.

RESULTS

The obtained results about the topically treated rats with a cream containing different InsP6 amounts and salts are shown in Figs. 1—3. As can be observed the InsP6 sodium salt was absorbed at significantly higher amounts than the InsP6 calcium–magnesium salt. Thus, after 7 d of topical cream application containing a 2% InsP6, the sodium salt corresponded to 23.35 ± 2.46 mg/l InsP6 urinary excretion whereas the calcium–magnesium salt corresponded to a 11.75 ± 3.96 mg/l InsP6 urinary excretion. For this period of time, the InsP6 excreted urinary amount of the sodium salt clearly depended on the InsP6 cream concentration. Maximum InsP6 urinary concentrations were observed approximately at 14 d of 2% InsP6 topical cream application and gave 66.35 ± 5.49 mg/l urinary InsP6 when the sodium salt was used and 16.02 ± 2.61 mg/l urinary InsP6 when the calcium–magnesium salt was applied. When the InsP6 topical cream administration ceased, the InsP6 urinary excretion fell dramatically approximately during a period of 10 d.

DISCUSSION

In spite of some dermatological applications of InsP6 being established at present,25) and several topical InsP6 based creams can be found in the market, no studies on the InsP6 absorption through the skin can be found in the literature. In a recent paper, it was demonstrated that InsP6 topically administered, notably and significantly reduced the development of subepithelial dystrophic calcifications in soft tissues,29) this demonstrating that InsP6 was unquestionably absorbed through the skin. The results of the present paper clearly demonstrated that InsP6 was absorbed through the skin layers, crossing the epidermis and dermis, entering the blood stream and increasing the urinary excretion. It is interesting to compare the absorption through the skin with the absorption through the gastrointestinal tract. Thus, in both cases there seems to be an optimum dose, above which no
Fig. 1. Influence of InsP₆ Concentration in the Topically Applied Cream and InsP₆ the Salt Used on Urinary InsP₆ Concentration

Section I: the treated rats had stopped the topical cream application. In the calcium/magnesium salt. Section II: the treated rats had stopped the topical cream application.

Further absorption occurs. Nevertheless, in the case of the gastrointestinal tract this amount was independent of the type of InsP₆ salt consumed¹³ but in the case of the skin, the InsP₆ sodium salt was absorbed much more favorably than the InsP₆ calcium–magnesium salt, thus the InsP₆ urinary levels were triple when the sodium salt was used. On the other hand, it is important to emphasize that the attained InsP₆ urinary levels found when InsP₆ was administered orally were almost always inferior to those observed when InsP₆ was topically administered. Thus, maximum InsP₆ urinary levels found when InsP₆ was administered orally through the diet or using specific complements, in no case to allow values superior to 6—7 mg/l InsP₆¹³ however through topical application urinary values of around 60 mg/l were achieved. This different behaviour of gastrointestinal and skin absorption could be in part explained considering that formation of insoluble no absorbable salts with divalent and trivalent cations and proteins in the gastrointestinal tract is more feasible due to the presence of food or food derivatives. In fact, from the results presented here it is observed that the InsP₆ sodium salt was clearly more favorably absorbed through the skin when compared with the calcium–magnesium salt.

From the presented results it can be deduced that by topical administration InsP₆ can achieve important concentrations in tissues and biological fluids, this demonstrating that it is possible to propose the topical use as a new InsP₆ administration route.

Acknowledgements One of the authors, J.P., expresses his appreciation to the Spanish Ministry of Education, Culture and Sport for a fellowship of the FPU program. Also, B.I. expresses his appreciation to the Conselleria d’Innovació i Energia del Govern de les Illes Balears for a fellowship. This work was supported by the Conselleria d’Innovació i Energía del Govern de les Illes Balears (Grant PROIB-2002GC1-04) and by the project BQU 2003-01659 of the Spanish Ministry of Science and Technology.

REFERENCES

6) Mellanby E., Special Report Series, Medical Research Council (Great Britain), 93, 2—65 (1925).